South Carolina College- and Career-Ready (SCCCR) Algebra 1

	The student will:	
	A1.FIF.1*	Extend previous knowledge of a function to apply to general behavior and features of a function. a. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. b. Represent a function using function notation and explain that $f(x)$ denotes the output of function f that corresponds to the input x. c. Understand that the graph of a function labeled as f is the set of all ordered pairs (x, y) that satisfy the equation $y=f(x)$.
	A1.FIF.2*	Evaluate functions and interpret the meaning of expressions involving function notation from a mathematical perspective and in terms of the context when the function describes a real-world situation.
	A1.FIF.4*	Interpret key features of a function that models the relationship between two quantities when given in graphical or tabular form. Sketch the graph of a function from a verbal description showing key features. Key features include intercepts; intervals where the function is increasing, decreasing, constant, positive, or negative; relative maximums and minimums; symmetries; end behavior and periodicity. (Limit to linear; quadratic; exponential.)
	A1.FIF.5*	Relate the domain and range of a function to its graph and, where applicable, to the quantitative relationship it describes. (Limit to linear; quadratic; exponential.)
	A1.FIF.6*	Given a function in graphical, symbolic, or tabular form, determine the average rate of change of the function over a specified interval. Interpret the meaning of the average rate of change in a given context. (Limit to linear; quadratic; exponential.)
	A1.FIF.7*	Graph functions from their symbolic representations. Indicate key features including intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior and periodicity. Graph simple cases by hand and use technology for complicated cases. (Limit to linear; quadratic; exponential only in the form $y=a^{x}+k$.)
	A1.FIF.8*	Translate between different but equivalent forms of a function equation to reveal and explain different properties of the function. (Limit to linear; quadratic; exponential.) (Note: A1.FIF.8a is not a Graduation Standard.) a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
	A1.FIF.9*	Compare properties of two functions given in different representations such as algebraic, graphical, tabular, or verbal. (Limit to linear; quadratic; exponential.)
䓞	The student will:	
	A1.FLQE.1*	Distinguish between situations that can be modeled with linear functions or exponential functions by recognizing situations in which one quantity changes at a constant rate per unit interval as opposed to those in which a quantity changes by a constant percent rate per unit interval. (Note: A1.FLQE.1a is not a Graduation Standard.) a. Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.
	A1.FLQE.2*	Create symbolic representations of linear and exponential functions, including arithmetic and geometric sequences, given graphs, verbal descriptions, and tables. (Limit to linear; exponential.)
	A1.FLQE.3*	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or more generally as a polynomial function.
	A1.FLQE.5*	Interpret the parameters in a linear or exponential function in terms of the context. (Limit to linear.)
年	The student will:	
	A1.NQ.1*	Use units of measurement to guide the solution of multi-step tasks. Choose and interpret appropriate labels, units, and scales when constructing graphs and other data displays.
	A1.NQ.2*	Label and define appropriate quantities in descriptive modeling contexts.
	A1.NQ.3*	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities in context.
	The student will:	
	A1.NRNS.1*	Rewrite expressions involving simple radicals and rational exponents in different forms.
	A1.NRNS.2*	Use the definition of the meaning of rational exponents to translate between rational exponent and radical forms.
	A1.NRNS. 3	Explain why the sum or product of rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
	The student will:	
	A1.SPID.6*	Using technology, create scatterplots and analyze those plots to compare the fit of linear, quadratic, or exponential models to a given data set. Select the appropriate model, fit a function to the data set, and use the function to solve problems in the context of the data.
	A1.SPID.7*	Create a linear function to graphically model data from a real-world problem and interpret the meaning of the slope and intercept(s) in the context of the given problem.
	A1.SPID.8*	Using technology, compute and interpret the correlation coefficient of a linear fit.

